在他们印象中,数学家应该都是头发花白,年过半百,可无论是布伦德还是洛叶都颠覆了他们的想象,这也太年轻了。
他们是外行,可是餐厅却不乏有内行,他们是绝对认得布伦德的,看着他居然和一个小女生交谈甚欢,他们都不由的想揉一揉眼睛,确定没有错之后,看洛叶的眼神就多了几分奇异。
布伦德也没有想到他居然可以和洛叶基本上没有障碍的交流下去,不但是曲率和基本群,洛叶懂黎曼几何,辛几何,拓扑几何,分形几何,有些涉猎他自己都没有她来的广。
他比洛叶这个学生要忙多了,在不得不结束和她的谈话时,非常诧异的问道,“你对几何学的认识明显比代数学要好,为什么要选择的群论?”
洛叶当然不会和他说真的原因,只是道,“等我硕博的时候应该会选择代数几何。”
布伦德道,“那应该很快了。”
他20岁就拿到了博士学位,和他比洛叶的进度算是慢了,可是经过刚刚的交谈,他相信只要他愿意,应该会很快拿到硕士学位和博士学位,他匆匆写下了自己的邮箱,“如果你在微分几何上有什么问题可以和我讨论。”
欧洲数学会主要是面向于在欧洲工作以及欧洲籍贯的数学家,布伦德拿到博士学位后就开始在斯坦福担任教授,现在在哥伦比亚大学任教,可以说他已经许久没有回过欧洲了,这次回来,不但要准备报告,还要和一众故人联络。
等布伦德走后,洛叶收好了纸条,吃完剩下的东西才继续上楼。
第二天布伦德的报告会,洛叶也去听了,下面做的满满的,其中不乏知名的数学家。
而布伦德的补充主要是在对于在他证明武义-劳森猜想中运用的的一个泛函方程,正是因为这个泛函方程,让他有了灵光一闪,最终用一个简单无比的方式来证明了这个猜想。
而光是一个补充,是无法支撑过一个小时的报告会的,在讲完这个泛函方程后,他又开始讲起了让自己之前发表过微分球面定理(DifferentialSphereTheorem),也是对那篇论文做一个重要补充,讲其中一个关键点,三维流行几何。
“……任何紧致,可定向的三维流行,当用其中一些整正互补相互交的球面和环面去切,对一个紧致单联通的黎曼流行,它的截面曲率位于……”
“……在截面曲率拼挤条件下,常曲率空间形式中的紧致子流行拓扑同胚于球面,当大于四维,紧致定向的子流行满足于……”
等到布伦德的报告讲完,下面响起了热烈的掌声,趁着这掌声洛叶悄然离去。
欧洲数学会的影响力差不多仅次于世界数学会,在这样的会上,永远不缺乏数学大佬,在布伦德的报告暂时告一段落后,洛叶又跑到了隔壁的听了爱德华?威腾的数学报告。
说起来爱德华?威腾也是普林斯顿的教授,可因为课程问题,洛叶之前还没有近距离接触过这位教授,可也听过他的传奇事迹。
大学专业是历史,后来对物理产生了兴趣,开始改学物理,在物理学上创建了一系列的理论,几次引发理论物理学的大地震,是理论物理的代表人物,后来为了研究理论物理去钻研数学,再后来他获得了菲尔兹奖。
可以说他本身就代表了传奇。
洛叶高中时候还深入研究了一番物理学,因此自然也知道他的事迹,只是上了大学后,她暂时放弃了物理学。
现在倒是有幸听了威腾关于数学物理的报告。
物理弦论认为时空的总数是十,其中的四维是爱因斯坦理论中的四维时空,此外的六维属于卡拉比-丘空间,它独立得暗藏于四维时空的每一点,我们看不到它们,但是弦论的结果告诉我们,它们是真实存在的。
之所以叫卡拉比-丘空间,是因为这源于卡拉比的猜想,最后由丘成桐证明成立。
而弦论告诉我们的不止是存在我们看不到的六个维度——因为这六个维度缩成了一个极小的空间,这个空间小到我们可以当做存在,可是理论上它却是真实存在的,且告诉我们这六个维度才是我们宇宙的决定性因素,决定了这个宇宙的性质和物理定律,哪种粒子能够存在,质量是多少,他们是如何相互作用。甚至自然界的一些常数都取决于卡拉比-求丘空间的“内空间”。
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:(霹雳同人)【兰经】玉烙兰心沁寒梅兰玉相随 (霹雳同人)【焱裳】对立的友谊 余生尽欢喜【CP完结】 穿书大反派,师妹全是恋爱脑? 一个陌生男人的来信【CP完结】 (霹雳同人)日月风华 抱错[重生] 直播:老登,鬼火停你家楼下咯! (霹雳同人)月韵 傻子与乞丐【CP完结】 三流豪门逆袭路 最神秘的部队 我一个道士,让我去霍格沃茨? 崽崽杂货店 综武:我有群芳谱,从黄蓉开始! 阿尔伯特来自地球【CP完结】 我!奈克瑟斯奥特曼不是街溜子 女装大佬恋爱史 猩猩捞月/优雅的猩猩在捞月 (综童话同人)王子和他的拾荒美人鱼